Electronic Packaging

- Primary function is to provide electrical connectivity from the semiconductor device to a Printed Wiring Board (PWB) or Printed Circuit Board (PCB):
 - Provides a path for power to be applied to the chip
 - Provides a way for data signals to be transmitted into and out of the chip
- Secondary function is to house and protect the chip from harsh environmental conditions.
- Also provides a pathway for dissipating heat generated by the chip.

Types of Electronic Packaging

Through-Hole Devices

Long leads are inserted through holes in the printed circuit boards.

DUAL IN-LINE PACKAGE (DIP)

J-LEAD PACKAGE

Types of Electronic Packaging

Surface Mount Technology (SMT)

Electronic
packages mount
directly to
rectangular pads
on the surface
of the printed
circuit boards.

Types of Electronic Packaging

Surface Mount Technology (SMT)

Electronic
packages mount
directly to
rectangular pads
on the surface
of the printed
circuit boards.

Billions of BGAs Are Produced Every Year

The Need for a Method and Apparatus to Inspect BGAs

- All of the solder balls on the BGA must be positioned in a precise location and be exactly the same height.
- Minute differences in location or height in any one ball in the array can render the BGA useless.
- It is not economical to repair BGAs, therefore a defective BGA usually means the entire electronic device must be discarded.
- A fast and efficient method of inspecting BGAs to identify defective packages was needed.

FIGURE 17 OF THE '411 PATENT

ILLUMINATING THE BGA

ILLUMINATING THE BGA

FRAME GRABBER

IMAGING THE BOTTOM VIEW OF THE BGA

IMAGING THE SIDE VIEW OF THE BGA

IMAGING THE SIDE VIEW OF THE BGA

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

PROCESSOR

C Language:

FindBlobCenter:

Finds the X, Y center of the pixels that have a value greater than THRESHOLD in the region (X1, Y1) to (X2, Y2).

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

PROCESSOR

C Language:

FillBallCenter:

Using the coordinates of the approximate center found in FindBlobCenter, the region of lower grayscale values is converted to a region of high grayscale values.

FindBallCenter:

Finds the X, Y center of the BGA ball using grayscale values.

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

FRAME GRABBER BOTTOM VIEW SIDE VIEW

PROCESSOR

C Language:

FindCrescentTop:

Finds the X, Y top position of a BGA crescent.

FINDING A SINGLE PIXEL POSITION LOCATING A LEAD

FindBlobCenter

For every pixel with a grayscale value above THRESHOLD, keep track of the number of pixels found and their corresponding X and Y coordinates.

FindBlobCenter

If a pixel grayscale value is **below** THRESHOLD, it is skipped.

FindBlobCenter

If a pixel grayscale value is **above** THRESHOLD, the pixel is counted and its corresponding X and Y coordinates are recorded.

FindBlobCenter

FindBlobCenter

Every pixel with a grayscale value above THRESHOLD is counted and its corresponding X coordinate and Y coordinate is added to obtain X SUM and Y SUM.

FindBlobCenter

After the entire region of interest is scanned column-by-column, row-by-row, the X SUM and Y SUM are divided by the number of pixels above THRESHOLD to **FindBlobCenter**.

