Organic Chemistry Is the Study of Compounds Containing Carbon

Carbon

C

- Needs 4 electrons
- Typical number of bonds: 4

Organic Chemistry Is the Study of Compounds Containing Carbon

Carbon

C

- Needs 4 electrons
- Typical number of bonds: 4

Add: Hydrogen

Н

- Needs 1 electron
- Typical number of bonds: 1

Organic Chemistry Is the Study of Compounds Containing Carbon

Carbon

C

- Needs 4 electrons
- Typical number of bonds: 4

Add: Hydrogen

- Н
- Needs 1 electron
- Typical number of bonds: 1

Methane

CH₄

 Chemical bonds are represented by lines.

Examples of Organic Molecules

Construction of Ethanol (Ethyl Alcohol)

Nitrogen Derivative Compounds

Carbon Atoms Can Bond to Each Other to Form Rings

SIX MEMBERED CARBON RINGS

Heterocycle Rings:

Some Atom Other than Carbon Is Present as One of the Ring Atoms

SIX MEMBERED CARBON RINGS

Pyridine	C ₅ H ₅ N	Piperidine	C ₅ H ₆ N	Morpholine	C ₄ H ₆ ON
		N _H		O N H	
FIVE MEMBERED CARBON RINGS					
Pyrrole	C ₄ H ₅ N	Pyrroline	C ₄ H ₇ N	Imidazole	$C_3H_4N_2$
N _H		N _H		N NH	

The Ondansetron Molecule

1,2,3,9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)-methyl]-4H-carbazol-4-one

Ondansetron Hydrochloride Monohydrate and Dihydrate

Benzene and Its Derivatives:

"R" Substitutions

Benzene

$$R_1 = H$$

 $R_2 = H$
 $R_3 = H$
 $R_4 = H$

Toluene

R₂

Meta-xylene

$$R_1 = CH_3$$

$$R_2 = H$$

$$R_3 = CH_3$$

$$R_4 = H$$

$$H$$

$$CH_3$$

Ortho-xylene

$$R_1 = CH_3$$

$$R_2 = CH_3$$

$$R_3 = H$$

$$R_4 = H$$

Para-xylene

$$R_1 = CH_3$$

$$R_2 = H$$

$$R_3 = H$$

$$R_4 = CH_3$$

$$H$$

$$CH_3$$

What Is a Crystal?

A solid made up of an orderly, repeating arrangement of molecules or atoms

What Is a Crystal?

A solid made up of an orderly, repeating arrangement of molecules or atoms

Sucrose molecules pack together to form a crystal

032h

What Is a Crystal?

A solid made up of an orderly, repeating arrangement of molecules or atoms

How Crystals are Formed

Ondansetron Hydrochloride Dihydrate

C₁₈H₂₀N₃O·CI·2 H₂O

07 PTX 477

Hydrogen Bonds between Molecules of Ondansetron Hydrochloride

Water (Hydration)
Forms
Hydrogen Bonds
between
Ondansetron
Molecules

Unit cell of Ondansetron Hydrochloride Dihydrate

Unit cell of Desolvated Ondansetron Hydrochloride

Effect of Desolvation on Ondansetron Hydrochloride Crystals

Ondansetron Hydrochloride Dihydrate

Desolvation of Ondansetron Hydrochloride

More oversized particles: REMOVE MORE WATER

Fewer oversized particles: REMOVE LESS WATER

More oversized particles: *REMOVE MORE WATER*

Fewer oversized particles: REMOVE LESS WATER

More oversized particles:

REMOVE MORE WATER

More oversized particles:

REMOVE MORE WATER

More oversized particles:

REMOVE MORE WATER

→ Excipients:

→ Active is added:

→ Punch FOUR tablets:

→ Dry to reduce particle size:

